Java Specialists in Action

Dr Heinz Kabutz

The Java Specialists Newsletter
heinz@javaspecialists.co.za

http://www.javaspecialists.co.za



@) maximum solutions

Java Specialists in Action

* Using dynamic proxies to write less code



(@) imum sosions
Background — Who Am | ?

* Heinz Kabutz
— Born in Africa, Cape Town

— PhD Computer Science from University of Cape Town
* University famous for first heart transplant

— Relocating to a Greek island on 20" October 06
— Java Champion

T\

JAVA™
CHAMPIONS




java training

Background — Whatdo 1 do ?

* Program on ordinary Java projects
— Since 1997, several 500k+ LOC systems

* Java Code Reviews
— Onsite interviews, Java quality inspection
— 5 day consulting jobs

* Advanced Java Training
— Design Patterns, Java 5, Introduction to Java

— Now offered in Norway through Bouvet
- http://www.bouvet.no/kurs




@) maximum solutions

The Java Specialists’ Newsletter

* Advanced topics
— 30 000 readers in 112 countries

— Please subscribe by sending an email to
subscribe@javaspecialists.co.za



Questions

* Please interrupt me with questions!
— Or write them down to ask at the end

* There are some stupid questions
— They are the ones you didn’t ask
— Once you've asked them, they are not stupid anymore

* The more you ask, the more interesting the talk is



java training

Introduction to Topic

* In this talk, we will look at:
— Design Patterns
— Dynamic Proxies in Java
— Soft, Weak and Strong references
— Some Java 5 features

* For additional free topics:

— The Java™ Specialists’ Newsletter
* http://www.javaspecialists.co.za

— And find out how
"h1 there".equals('cheers!”) == true



java training

Design Patterns

* Mainstream of OO landscape, offering us:
— View into brains of OO experts
— Quicker understanding of
existing designs
* e.g. Visitor pattern

used by Annotation
Processing Tool

— Improved communication
between developers

— Readjust “thinking mistakes”




java training

Vintage Wines

* Software Design is like good red wine
— At first, quality of wine does not matter
* As long as it has the right effect
— With experience, you discern difference

— As you become a connoisseur you experience the
various textures you didn’t notice before

* Grown on the north slope in Italy on clay ground

* Warning: Once you are hooked, you will no longer
be satisfied with inferior designs




java training

Proxy Pattern
Intent [GoF95]

— Provide a surrogate or
placeholder for another
object to control access
to it.

10



Proxy Structure

interface
Subject

W

‘ Client |

+teciest) ol

RealSubject Proxy
-realsubjectHealsSubject

i

+reguestovoid

+reguestlvoid

11



java training

Types of Proxies in GoF We will focus

on this type
* Virtual Proxy

— creates expensive objects on demand

* Remote Proxy

— provides a local representation for an object in a different
address space

* Protection Proxy
— controls access to original object

12



Approaches to writing proxies

* Handcoded

— Only for the very brave ... or foolish
* Autogenerated code

— RMI stubs and skeletons created by rmic
* Dynamic proxies

— Available since JDK 1.3

— Dynamically creates a new class at runtime
— Flexible and easy to use

13



java training

Model for example

* Company creates
moral fibre

Company 1 interface
makehoney = WoraiFihre
damageErvironment aribociaiReshansibns
becomefFocusOmiediaAttention grnpowerE mploess

clegun E mviraninent

“on demand” -
‘I‘u‘luraIFlhrEImpl |i

MoralFibreProxy |

14



public class Company {
// set in constructor ...
private final MoralFibre moralFibre;

}

public void becomeFocusOfMediaAttention() {

System.out.println("Look how good we are...");
cash -= moralFibre.actSociallyResponsibly();
cash -= moralFibre.cleanupEnvironment();
cash -= moralFibre.empowerEmployees();

}

@override

public String tostring() {
Formatter formatter = new Formatter();
formatter.format("%s has $ %.2f", name, cash);
return formatter.toString(Q);

}

15



public class MoralFibreImpl implements MoralFibre {

}

// very expensive to create moral fibre!
private byte[] costOofMoralFibre = new byte[900%1000];

{ system.out.printin("Moral Fibre Created!"); }

// AIDS orphans

public double actSociallyResponsibly() {
return costOfMoralFibre.length / 3;

}

// shares to employees

public double empowerEmployees() {
return costOfMoralFibre.length / 3;

}

// oiled sea birds

public double cleanupEnvironment() {
return costOfMoralFibre.length / 3;

}




java training

Handcoded Proxy

* Usually results in a lot of effort

* Good programmers have to be lazy @N@

— DRY principle
* Don'’t repeat yourself

* Shown just for illustration

17



java training

public class MoralFibreProxy implements MoralFibre {
private MoralFibreImpl realSubject;
private MoralFibre realSubject() {
if (realsubject == null) { // need synchronization
realsubject = new MoralFibreImpl(Q);

}

return realSubject;

}
public double actSociallyResponsibly() {

return realSubject().actSociallyResponsibly(Q);
}

public double empowereEmployees() { ,
return realSubject().empowerEmployees(
}

public double cleanupEnvironment() {
return realSubject().cleanupEnvironment();
}




java training

import static java.util.concurrent.TimeuUnit.SECONDS;

public class worldMarketO {

public static void main(String[] args) throws

Exception {

Company maxsol = new Company("Maximum Solutions",
1000 * 1000, new MoralFibrepProxy());

SECONDS.sleep(2); // better than Thread.sleep();

maxsol.makeMoney(Q);
System.out.printin(maxsol);
SECONDS.sleep(2);
maxsol.damageEnvironment();
System.out.printin(maxsol);
SECONDS.sleep(2);

Oh goodie!

Maximum Solutions has $ 2000000.00
Oops, sorry about that oilspill...
Maximum Solutions has $ 8000000.00
Look how good we are...

Moral Fibre Created!

Maximum Solutions has $ 7100000.00

maxsol.becomeFocusOfMediaAttention();

System.out.printin(maxsol);

19




java training

Dynamic Proxies

* Handcoded proxy flawed
— Previous approach broken — what if toString() is called?

— Fixing synchronization problems would need to be done
everywhere

* Allows you to write a method call handler
— |Is invoked every time any method is called on interface

* Easy to use
— But, seriously underused feature of Java

20



But First, References

* We want to release references when possible
— Soft, Weak and Strong references offer different benefits
— Works in conjunction with proxies
— However, references are not transparent

21



java training

Strong, Soft and Weak References

* Java 1.2 introduced concept of soft and weak
references

* Weak reference is released when no strong
reference is pointing to the object

* Soft reference can be released, but will typically
only be released when memory is low

— Works correctly since JDK 1.4

22



Object Adapter Pattern — Pointers

* References are not transparent

* \We make them more transparent by defining a
Pointer interface

— Can then be Strong, Weak or Soft

public interface Pointer<T> {
void set(T t):
T getQ);

}

23



java training

Strong Pointer

* Simply contains a strong reference to object
* Will never be garbage collected

public class StrongPointer<T>
implements Pointer<T> {

private T t;
public void set(T t) { this.t =t
public T get() { return t:

}

}

}

24



java training

Reference Pointer

* Abstract superclass to either soft or weak reference
pointer

import java.lang.ref.Reference;
public abstract class RefPointer<T>
implements Pointer<T> {
private Reference<T> ref;
protected void set(Reference<T> ref) {
this.ref = ref;

}
public T get() {
return ref == null ? null : ref.get();

}
}

25



java training

Soft and Weak Reference Pointers

* Contains either soft or weak reference to object
* WIll be garbage collected later

import java.lang.ref.SoftReference;
public class SoftPointer<T>
extends RefPointer<T> {
public void set(T t) {
set(new SoftReference<T>(t));

}
}

import java.lang.ref.weakrReference;
public class weakPointer<T> extends RefPointer<T> {
public void set(T t) {
set(new WeakReference<T>(t));

}
}

26



java training

Using Turbocharged enums

* We want to define enum for these pointers

* But, we don’'t want to use switch
— Switch and multi-conditional if-else are anti-OO
— Rather use inheritance, strategy or state patterns

* Enums allow us to define abstract methods
— We implement these in the enum values themselves

27



public enum PointerType {

STRONG { // these are anonymous inner classes
public <T> Pointer<T> make() { // note generics

return new StrongPointer<T>();

}

},
WEAK {

public <T> Pointer<T> make() {
return new wWeakPointer<T>(Q);
}

},
SOFT {

public <T> Pointer<T> make() {
return new SoftPointer<T>();
}

}s

public abstract <T> Pointer<T> make();

28



java training

PointerTest Example

public void test(PointerType type) {
System.out.println("Testing " + type + " Pointer™);
MyObject obj = new MyObject(type.tostring());
Pointer<MyObject> pointer = type.make(Q);
pointer.set(obj);
System.out.printin(pointer.get());
obj = null;
forceGC();
System.out.printin(pointer.get());
forceOOME() ;
System.out.printin(pointer.get());
System.out.printinQ;



java training

Danger — References

* References put additional strain on GC
* Only use with large objects
* Memory space preserving measure

— But can severely impact on performance

* Even empty finalize() methods can cause
OutOfMemoryError
— Additional step in GC that runs in separate thread

30



java training

Defining a Dynamic Proxy

* \We make a new instance of an interface class
using java.lang.reflect.Proxy:

Object o = Proxy.newProxyInstance(
Thread.currentThread() .getContextClassLoader(),
new Class[]{ interface to implement },
implementation of InvocationHandler

);
* The result is an instance of interface to implement

31



java training

import java.lang.reflect.¥*;

public class VirtualProxy<T> implements InvocationHandler {
private final Pointer<T> realSubjectPointer;
private final Object[] constrpParams;
private final Constructor<? extends T> subjectConstr;

public VvirtualProxy(Class<? extends T> realSubjectClass,

Class[] constrParamTypes,
Object[] constrparams,
PointerType pointerType) {

try {

}
}

subjectConstr = realSubjectClass.
getConstructor(constrrParamTypes);

realSubjectPointer = pointerType.make();

catch (NoSuchMethodException e) {

throw new IllegalArgumenteException(e);

this.constrParams = constrParams;

32



java training

public Object invoke(Object proxy, Method method,
Object[] args) throws Throwable {
T realSubject;
synchronized (this) {
realsubject = realSubjectPointer.get();
if (realsubject == null) {
realsubject = subjectConstr.newInstance(
constrpParams) ;
realsubjectPointer.set(realsSubject);

}
}

return method.invoke(realsubject, args);

}
}

* Whenever any method is invoked on the proxy object, it
gets the real subject from the Pointer and creates it if
necessary

33



java training

A word about synchronization

* We need to synchronize whenever we check the
value of the pointer

— Otherwise several realSubject objects could be created
* We can synchronized on “this”

— No one else will have a pointer to the object
* Double-checked locking idiom broken pre-Java 5

— It now works if you make the field volatile
— Easier to get synchronized correct than volatile

34



Proxy Factory

* To simplify our client code, we define a Proxy

Factory:
@Suppresswarnings("unchecked") // be careful of this!

public class ProxyFactory {
public static <T> T virtualProxy(Class<T> subject) {

// figure out realSubject class and delegate ...
}

public static <T> T virtualProxy(Class<T> subject,
PointerType type) { ... }

public static <T> T virtualProxy(Class<T> subject,
Class<? extends T> realsubjectClass,

Class[] constrParamTypes,
Object[] constrpParams, PointerType type) { ... }



java training

Proxy Factory

* We will just show the main ProxyFactory method:
— The other methods send default values to this one

public class ProxyFactory {
public static <T> T virtualProxy(Class<T> subject,
Class<? extends T> realsSubjectClass,
Class[] constrParamTypes,
Object[] constrParams, PointerType type) {
return (T) Proxy.newProxyInstance(
Thread.currentThread() .getContextClassLoader(),
new Class[] { subject },
new VirtualProxy<T>(realsubjectClass,
constrParamTypes, constrParams, type));

36



java training

import static com.maxoft.proxy.ProxyFactory.virtualProxy;
import static java.util.concurrent.Timeunit.SECONDS;

public class worldMarketl {

public static void main(String[] args) throws Exception {
Company maxsol = new Company("'Maximum Solutions”,
1000 * 1000, virtualProxy(MoralFibre.class));

SECONDS.sleep(2);
maxso1.makeMoney();
System.out.printin(maxsol);
SECONDS.sleep(2);
maxsol.damageEnvironment();
System.out.printin(maxsol);
SECONDS.sleep(2);

Oh goodie!

Maximum Solutions has $ 2000000.00
Oops, sorry about that oilspill...
Maximum Solutions has $ 8000000.00
Look how good we are...

Moral Fibre Created!

Maximum Solutions has $ 7100000.00

maxsol.becomeFocusOfMediaAttention();

System.out.printlin(maxsol);




java training

* Weak Pointer is cleared when we don’t have a
strong ref

Company maxsol = new Company("Maximum Solutions",
1000000, virtualpProxy(MoralFibre.class, WEAK));

SECONDS.sleep(2);

maxsol.damageEnvironment();

maxso1.becomeFocusOfMediaAttention();

Oops, sorry about that oilspill...
Look how good we are...
Moral Fibre Created!
Oops, sorry about that oilspill...
// short term memory. .. Look how good we are...
System.gc(Q); Moral Fibre Created!

SECONDS.sleep(2);
maxsol.damageEnvironment();
maxsol.becomeFocusOfMediaAttention();



java training

* Soft Pointer more appropriate

Company maxsol = new Company("Maximum Solutions", 1000000,
virtualProxy(MoralFibre.class, SOFT));
SECONDS.sleep(2);

maxso1.damageEnvironment();

maxso1.becomeFocusofMediaAttention(); |O°PS, sorry about that oilspill...

Look how good we are...

. . Moral Fibre Created!
System.gcQ); // ignores soft pointer Oops, sorry about that oilspill...

SECONDS.sleep(2); Look how good we are...
maxsol .damageEnvironment(); java.lang.OutOfMemoryError:
maxsol.becomeFocusOfMediaAttention(); Java heap space

Oops, sorry about that oilspill...
forceOOME(Q); // clears soft pointer |Look how good we are...
SECONDS.sleep(2); Moral Fibre Created!

maxsol.damageEnvironment(Q);
maxsol.becomeFocusOfMediaAttention();
}
private static void forceOOME() {
try {byte[] b = new byte[1000000000];}
catch (OutOofMemoryError error) { System.err.printin(error); }

} 39



java training

Performance of Dynamic Proxies

933
[1 Method calls
(100000/s)
[] Standard Deviation
275
108 - 53 . 53 . 54
[0 L L L
] ] ]
> O 9 ~ Q_
> E £ e £ X ELX
6-. o (] e ()] C O
O S S3 S2
S £ AL A= A
- -

40



java training

Analysis of Performance Results

* Consider performance in real-life context
— How often does a method need to get called per second?

— What contention are you trying to solve — CPU, 10 or
memory?

* Probably the wrong solution for CPU bound contention

* Big deviation for “No Proxy” — probably due to
HotSpot compiler inlining method call.

41



java training

Virtual Proxy Gotchas

* Be careful how you implement equals()

— Should always be symmetric (from JavaDocs).

= For any non-null reference values x and y, x.equals(y)
should return true if and only if y.equals(x) returns true

* EXxceptions

— General problem with proxies
* Local interfaces vs. remote interfaces in EJB

— Were checked exceptions invented on April 1st ?

42



java training

Checkpoint

We've looked at the concept of a Virtual Proxy
based on the GoF pattern

We have seen how to implement this with dynamic
proxies (since JDK 1.3)

We have also looked at Soft and Weak refs

Lastly, we were unsurprised that dynamic proxy
performs worse than handcoded proxy

43



Further uses of Dynamic Proxy

* Protection Proxy
— Only route call when caller has correct security context
* Similar to the “Personal Assistant” pattern
* Dynamic Decorator or Filter
— We can add functions dynamically to an object
— See newsletter # 34
— Disclaimer: a bit difficult to understand

44



java training

Dynamic Object Adapter

* Based on Adapter pattern by GoF

* Plain Object Adapter has some drawbacks:

— Sometimes you want to adapt an interface, but only want
to override some methods

— E.g. java.sgl.Connection

* Structurally, the patterns Adapter, Proxy, Decorator
and Composite are almost identical

45



java training

Object Adapter Structure (GoF)

interface
Target

+ e st viold

Adaptee

Adapter

-adaptee:Adaptes

+epecificRequestaid

adaptes

+AdapterfadapteeAdaptes)
+reguestdvoid

adaptee. specificFegquest] )

46



* We delegate the call if the adapter has a method with this
signature

* Objects adaptee and adapter can be of any type

public Object invoke(Object proxy, Method method,
object[] args) throws Throwable {

try {
// find out if the adapter has this method
Method other = adaptedMethods.get(
new MethodIdentifier(method));
if (other != null) { // yes it has
return other.invoke(adapter, args);
} else { // no it does not
return method.invoke(adaptee, args);
}
} catch (InvocationTargetException e) {
throw e.getTargetException();

}
} 47



* The ProxyFactory now gets a new method:

public class ProxyFactory {
public static <T> T adapt(Object adaptee,
Class<T> target,
Object adapter) {
return (T) Proxy.newProxyInstance(
Thread.currentThread() .getContextClassLoader(),
new Class[]{target},
new DynamicObjectAdapter<T>(
adapter, adaptee));

48



* Client can now adapt interfaces very easily

import static com.maxoft.proxy.ProxyFactory.*;

/ey

connection con = DriverManager.getConnection("...");
Connection con2 = adapt(con, Connection.class,
new Object() {
public void close() {
System.out.printin('No, do not close connection");

}
};

* For additional examples of this technique, see The Java
Specialists’ Newsletter # 108

- http://www.javaspecialists.co.za
49



Benefits of Dynamic Proxies

* Write once, use everywhere
* Single point of change
* Elegant coding on the client
— Esp. combined with static imports & generics

* Slight performance overhead
— But view that in context of application

50



@) maximum solutions

Demo

* Short demonstration using Dynamic Virtual Proxy
for new interface

51



!J maximum solutions

Conclusion

* Thank you very much for listening to me ©
* In my experience, Dynamic Proxies are easy to use
* Look for applications where they are appropriate

52



Java Specialists in Action

Dr Heinz Kabutz

The Java Specialists Newsletter
heinz@javaspecialists.co.za

http://www.javaspecialists.co.za



